Orbita . U Z

Imkon qadar uyda qoling!

  • Shrift o'lchamini kattalashtirish
  • Odatiy shrift o'lchami
  • Shrift o'lchamini kichiklashtirish
Bosh sahifa Matematika
Matematika bo'yicha ma'lumotnoma va qo'llanmalar

Astroida

E-mail Chop etish PDF
Maqola Reytingi: / 3
Juda yomon!A'lo! 

Astroida

Astroidaning yasalishiAstroida bu - R radiusli katta aylananing ichi bo‘ylab harakatlanadigan r (bunda r=R/4) radiusli kichik aylanadagi nuqtaning trayektoriyasi hosil qiladigan egri chiziq bo‘lib, kichik aylaning katta aylana ichida bir marta to‘liq aylanib chiqishidan yulduzsimon qavariq ko‘pburchak shakli paydo bo‘ladi. Boshqacha aytganda, astroida bu k=4 modulga ega bo‘lgan giposikloidadir. Ya'ni, katta aylananing diametri kichik aylananing diametrida 4 marta katta. Astroida atamasi yunon tilida "astros" ya'ni, yulduzsimon degan ma'nini anglatadi. Sababi astroidaning shakliy ko‘rinishi yulduzga o‘xshab ketishidir.

Astroida shakliga bo‘lgan qiziqish, tarixda turli zamonlarda turli avlod matematiklarini doimo o‘ziga jalb etib kelgan. Matematika tarixidagi eng kuchli olimlar ham ushbu ajoyib egri chiziqning qiziqarli xossalarini tadqiq etishga uncha-muncha mehnat mashaqqat sarf etishgan. Qayd etilgan manbalarda ushbu egri chiziqni birinchi bo‘lib Daniyalik astronom Olaf Remer batafsil tekshirgan deyiladi. Uning 1674-yilga taalluqli bo‘lgan va asosiy mazmuni tishli uzatmalarning eng samarador variantlarini tadqiq qilishga bag‘ishlangan ilmiy ishlarida astroida haqida batafsil matematik tahlillarni uchratamiz. Olaf Remerdan keyingi davrlarda astroidaning xossalarini shuningdek Shveytsariyalik buyuk matematik Iogann Bernullining 1691-yilga oid asarlarida; olmon matematigi Gotfrid Leybnitsning 1715-yilga taalluqli ishlarida va farang olimi Jan D'Alamberning 1748-yilga mansub izlanishlarida uchratish mumkin.

Yangilаndi: 18.12.2018 09:09
 

Eyler-Maskeroni doimiysi

E-mail Chop etish PDF
Maqola Reytingi: / 2
Juda yomon!A'lo! 

Eyler-Maskeroni doimiysi

Yunon alifbosidagi γ harfi bilan belgilanadigan Eyler-Maskeroni doimiysining son qiymati 0.5772157... ga taqriban teng. Ushbu doimiy ko‘rsatkichli funksiyalar va logarifmlarni, sonlar nazariyasi bilan bog‘lab turadi. U n cheksizga intilganida,

ifodaning chegarasi sifatida aniqlanadi.

γ sonining qo‘llash sohasi juda keng. Ushbu son - cheksiz qatorlarni, ko‘paytmalarni, ehtimollar nazariyasi va muayyan turdagi integrallarni o‘rganishda muhim ahamiyat kasb etadi. Masalan, 1 dan n gacha bo‘lgan barcha sonlarning bo‘luvchilarining o‘rtacha soni ga juda yaqin bo‘ladi.

Yangilаndi: 18.12.2018 09:14
 

Stirling formulasi

E-mail Chop etish PDF

Stirling formulasi

Hozirgi kunda faktoriallar matematikada har qadamda uchraydi. n musbat va butun son uchun "n faktorial" ifodasi (n! tarzida yoziladi) -n sonning o‘zi va ungacha bo‘lgan barcha butun sonlarning o‘zaro ko‘paytmasini anglatadi. Masalan 4!=1×2×3×4=24.

Faktorialning n! ko‘rinishida ifodalanishi qoidasini 1808-yilda farang matematigi Kristian Kramp joriy qilgan. Faktoriallar kombinatorikada juda katta ahamiyat kasb etadi. Masalan ko‘p sonli obyektlarning o‘zaro bir-biriga nisbatan joylashish variantlarini hisoblash zarur bo‘lgan o‘rinlarda faktoriallar juda asqotadi. Shuningdek faktoriallardan sonlar nazariyasi, ehtimollar nazariyasi hamda, matematik analiz sohalarida keng foydalaniladi.

Yangilаndi: 18.12.2018 09:21
 

Foizlar

E-mail Chop etish PDF
Maqola Reytingi: / 4
Juda yomon!A'lo! 

Foiz (lotincha pro cento - yuzdan sozidan kelib chiqqann) deb yuzdan bir ulushga aytiladi.

1 % yozuvi 0,01 ni bildiradi; 27 %= 0,27; 100 %=1; 150 % = 1,5 va hokazo.

Maoshning 1 % i maoshning 0,01 qismini bildiradi; ishni tola bajarish - rejanini 100% bajarish demakdir; rejani 150 % bajarish - rejani 1,5 hissa bajarish va hokazo demakdir.

Biror sonning foiz ifodasini topish uchun shu sonni 100 ga kopaytirish (yoki uning vergulini ikki xona ong tomonga surish) kerak.

Misollar. 2 ning foiz ifodasi 200 %; 0,357 ning foiz ifodasi 35,7 %, 1,753 ning foiz ifodasi 175,3 %.

Sonni ozining foiz ifodasidan topish uchun uning foiz ifodasini 100 ga bolish (yoki vergulni ikki xona chapga surish) kerak.

Misollar. 13,5 % = 0,135; 2,3 % = 0,023; 145 %=1,45; 0,4% =0,004.


Bizni ijtimoiy tarmoqlarda ham kuzatib boring:

Feysbukda: https://www.facebook.com/Orbita.Uz/

Tvitterda: @OrbitaUz

Google+ : https://plus.google.com/104225891102513041205/posts/

Telegramdagi kanalimiz: https://telegram.me/OrbitaUz

Yangilаndi: 14.09.2018 11:57
 

Ko‘p uchraydigan ba'zi o‘zgarmas miqdorlar

E-mail Chop etish PDF
Maqola Reytingi: / 10
Juda yomon!A'lo! 

Ko‘p uchraydigan ba'zi o‘zgarmas miqdorlar


Bizni ijtimoiy tarmoqlarda ham kuzatib boring:

Feysbukda: https://www.facebook.com/Orbita.Uz/

Tvitterda: @OrbitaUz

Google+ : https://plus.google.com/104225891102513041205/posts/

Telegramdagi kanalimiz: https://telegram.me/OrbitaUz

Yangilаndi: 26.11.2018 10:27
 


Maqolaning 4 sahifasi, jami 4 sаhifа
Banner

Orbita.Uz infotekasi

Milliy bayramlarimiz

Yaqin kunlardagi rasmiy bayramlar, kasb bayramlari, muhim tarixiy va xalqaro sanalar.

26 - may - Kimyogarlar kuni


1 - iyun - Xalqaro bolalarni himoya qilish kuni


5 - iyun - Iyd al-Fitr - Ramazon hayiti (Dam olish kuni) (oy chiqishiga qarab bir kunga o'zgarishi mumkin)


13 - Iyd al-Adho - Qurbon hayoti kuni (Dam olish kuni) (oy chiqishiga qarab bir kunga o'zgarishi mumkin)


 

1 - Sentyabr - Mustaqillik kuni. (Dam olish kuni)


2 - Sentyabr - Bilimlar kuni.


 

1 - Oktyabr - Ustoz va murabbiylar kuni. (Dam olish kuni)

O'zbekiston shaharlari ob-havo ma'lumotlari

Orbita.Uz do'stlari:

Ziyo istagan qalblar uchun:

O'zbek tilidagi eng katta elektron kutubxona!

​Ўзбекча va o'zbekcha o'zaro transkripsiya!
O'zbekcha va ўзбекча ўзаро транскрипция!

Bizning statistika


Orbital latifalar :) :)

????????????????????????

Agar arktangens shimoliy yarimsharda mavjud bo'lsa,
demak, janubiy yarimsharda

Antarktangens ham mavjuddir!!!


Mavzuga oid boshqa materiallar

Birliklar Konvertori

Birlik / Kattalik turini tanlang:
Qiymatni kiriting:

Natijaviy qiymat:

© Orbita.uz

Kontent statistikasi

Foydalanuvchilar soni : 368
Kiritilgan mаqolalar soni : 852
O'qilgan sahifalar soni : 5966400

Tafakkur durdonalari

Dunyoda ilmdan o'zga najot yo'q va bo'lmagay! (Imom Buxoriy)